
LECTURE 2

YIHANG ZHU

The Main reference is the �rst three sections of [Neu99]

1. Sum of two squares

Quadratic �elds arise when studying quadratic Diophantine equations.

Question 1.1. Let p be a prime. When is p of the form x2 + y2 with x, y ∈ Z?

If p = 2 the answer is yes. If p ≡ 3 mod 4, then no. We need to prove p ≡ 1
mod 4⇒ p = x2 + y2. The equation can be rewritten as

p = (x+ iy)(x− iy), i =
√
−1.

The idea is that �nding a solution (x, y) ∈ Z2 is the same as �nding a number
z = x+ iy ∈ Z[i] such that p = zz̄. We use the following basic fact.

Fact 1.2. The ring of Gaussian integers Z[i] is a UFD.

We go on to determine the units and prime elements of Z[i]. De�ne the norm
map

N : Z[i]→ Z, z 7→ zz̄.

It is multiplicative and Nz = Nz̄. An element u ∈ Z[i] is a unit if and only if
Nu = 1, so the group of units is {±1,±i} . We factorize an odd rational prime p
inside Z[i]:

p =
∏

peii .

Then p2 = Np =
∏
N(pi)

ei Which shows the factorization can only be one of the
two forms

p = p or p = pp̄.

Note the second case implies p = Np = x2 + y2. If p ≡ 3 mod 4, then the second
case cannot happen, so p = p. Suppose p ≡ 1 mod 4, then (−1p ) = 1, so p divides

x2 + 1 = (x + i)(x − i) for some x ∈ Z. Suppose p = p. Then p can divide only
one of x+ i, x− i, but then p̄ = p always divides the other! Contradiction. Hence
p = pp̄. Question 1.1 is solved.

The above discussion classi�es the prime elements in Z[i] completely. In fact, if
p is prime element, then we claim that p appears in the factorization of a rational
prime p. This is because p divides Np, hence it divides a rational prime factor of
Np. Therefore p falls into one of the three categories:

(1) p ∼ 1 + i, which appears in 2 = pp̄ = −ip2.
(2) p = x+ yi, with x2 + y2 equal to a rational prime p.
(3) p is a rational prime p ≡ 3 mod 4.

Correspondingly, the factorization of a rational prime p inside Z[i] has three behav-
iors:

(1) 2 = −i(1 + i)2. We say 2 is rami�ed.
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(2) p = pp̄ when p ≡ 1 mod 4. We say p is split.
(3) p remains prime when p ≡ 3 mod 4. We say p is inert.

Thus we have seen that solving the problem p = x2 + y2 is quite equivalent to
determining the arithmetic structure of the ring Z[i]. In the above discussion, a
crucial input is determining (−1p ) for odd p according to p mod 4. Later we will

see that the Legendre symbol is a special case of the Artin symbol (p, L/Q) for L
a number �eld, which governs the factorization of p just as in this case. The Artin
symbol is also called the Frobenius at p. In this case, we view (−1p ) as an element

σ ∈ Gal(Q(i)/Q) ∼= {±1}. Then σa ≡ ap mod p for a ∈ Z[i] and p|p. This is why
we use the name Frobenius.

Exercise 1.3. Prove the last statement.

2. Number fields

The ring of Gaussian integers Z[i] can be recovered from its fraction �eld Q(i).
The former consists of elements of Q(i) whose monic minimal polynomial over Q
lies in Z[X].

De�nition 2.1. Let B ⊃ A be a rings. An element b ∈ B is said to be integral
over A if it is killed by a monic polynomial in A[X]. We say B is integral over A
if each element of B is integral over A. The integral closure of A in B is the set of
elements of B that are integral over A. We say A is integrally closed in B if A is
equal to its integral closure in B. If A is an integral domain, we say A is integrally
closed if A is integrally closed in its fraction �eld.

Exercise 2.2. Prove that a UFD is integrally closed.

Fact 2.3. Let B ⊃ A be rings. The integral closure of A in B is always a ring.

De�nition 2.4. A number �eld K is a �nite extension of Q. The ring of integers
OK of K is de�ned to be the integral closure of Z in K.

The ring OK has very nice properties. One should have in mind that it is to K
what Z is to Q.

Proposition 2.5. The fraction �eld of OK inside K is K. In fact any x ∈ K× is
of the form a/b with a ∈ OK , b ∈ Z. Any �nite OK-submodule of K, in particular
OK itself, is a free Z-module of rank [K : Q].

The latter assertion means that there exists an integral basis, namely n = [K : Q]
elements α1, . . . , αn ∈ OK such that

OK = Zα1 ⊕ · · · ⊕ Zαn.
De�ne the trace and norm maps as in �eld theory, denoted by TrK/Q,NK/Q :

K → Q. Since Q is perfect, we have TrK/Q(x) =
∑
σ σx,NK/Q(x) =

∏
σ σx, where

σ runs through Hom(K, Q̄). The trace and norm maps send OK into Z, because Z
is integrally closed.

De�nition 2.6. Let αi be an integral basis for OK . The discriminant of OK is
the integer

discOK = det(TrK/Q(αiαj)).

This number is independent of the choice of {αi}. It is also called the discriminant
of K, denoted by discK or dK .
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Lemma 2.7. Let {σ1, . . . , σn} = HomQ(K, Q̄). Then dK = det(σiαj)
2.

Remark 2.8. Suppose OK = Z[α]. Then K = Q(α) and we can take an integral
basis to be 1, α, . . . , αn−1, where n = [K : Q]. In this case we see that dK is equal
to the discriminant of the minimal polynomial of α. (dK is the van der Monde
determinant det(σiα

j) =
∏
i 6=j(σiα− σjα)).

Exercise 2.9. Let K = Q(
√
n) with n square free. If n ≡ 1 mod 4, then OK =

Z[ 1+
√
n

2 ] and dK = n. If n ≡ 2, 3 mod 4, then OK = Z[
√
n] and dK = 4n.

Concisely written we have OK = Z[dK+
√
dK

2 ] in any case.

Example 2.10. Let ζ be a primitive n-th root of unity. Consider the cyclotomic
�eld K = Q(ζ). It is the splitting �eld of Xn − 1. It is quite nontrivial to see that
OK = Z[ζ]

We used fact that Z[i] = OQ(i) is a UFD to study the problem of sum of two
squares. However in general OK fails to be a UFD.

Exercise 2.11. Show that the identity 3 ·7 = (1+2
√
−5)(1−2

√
−5) gives two essen-

tially di�erent factorizations of 21 into irreducible elements in the ring OQ(
√
−5) =

Z[
√
−5].

In fact, if OK were always a UFD, then number theory would have been much
easier. For instance one can come up with a false proof of Fermat's Last theorem
by using the factorization cp = ap + bp =

∏p
i=1(a + ζib) and the assumption that

Z[ζ] was a UFD to deduce a contradiction. Such a "proof" was outlined by Gabriel
Lamé in 1847. Quite soon afterwards Ernst Kummer exhibited a counterexample
to the unique factorization of Z[ζ]. Moreover Kummer came up with an absolutely
great idea to rescue the situation. He de�ned objects called the "ideal numbers"
and proved that they satisfy unique factorization. Using that Kummer was able
to prove Fermat's Last Theorem for regular primes, for instance all the primes
less than 100 except 2, 37, 59, 67. However the language of "ideal numbers" used
by Kummer was not widely understood by others until Dedekind clari�ed all the
concepts using the modern language of ideals of rings. This is the origin of the
name "ideal".

We recall some basic de�nitions in ring theory.

De�nition 2.12. Let R be a ring. An ideal of R is a subset I of R such that for
any a, b ∈ I, r ∈ R, we have a + b ∈ I, ra ∈ I. An ideal I is maximal if it is not
equal to R and the only ideal J ) I is J = R. An ideal I is prime if whenever
a, b ∈ R are such that ab ∈ I, we have a ∈ I or b ∈ I. Let I, J be ideals. De�ne
I + J = {a+ b|a ∈ I, b ∈ J}. De�ne IJ = {

∑n
i=1 aibi|n ≥ 1, ai ∈ I, bi ∈ J} . Both

I + J and IJ are still ideals.

Example 2.13. Let A be an integral domain, a ∈ A. Then a is a prime element if
and only if (a) is a prime ideal. In particular all the prime ideals of Z are (p) and
(0).

De�nition 2.14. Let R be an integral domain. R is called Noetherian if any ideal
of R is generated by �nitely many elements. R is said to be one-dimensional if
any prime ideal of R is either zero or maximal. R is said to be integrally closed
or normal if it is integrally closed in its fraction �eld. R is said to be a Dedekind
domain if it is a one-dimensional Noetherian normal integral domain.



4 YIHANG ZHU

Example 2.15. Any PID is Dedekind.

Proposition 2.16. Let K be a number �eld. Then OK is a Dedekind domain.

Later we will see that there is a strong analogy between Dedekind domains and
smooth algebraic curves. This analogy is in a sense an elaboration of the naive
observation that Z and Fp[t] are quite similar.

The concept of a Dedekind domain is not just an arbitrary enumeration of nice
properties, but it is characterized by the unique ideal factorization property.

Theorem 2.17. Let R be an integral domain. TFAE.

(1) R is Dedekind.
(2) Any nonzero ideal I ⊂ R can be written as I = p1 · · · pk, where pi are

prime ideals of R. Convention: the empty product is R. The factorization
is unique up to switching the order of the pi's.

Remark 2.18. Using the unique factorization we can de�ne when an ideal I divides
another J in an obvious way. We have I|J ⇔ J ⊂ I.

Exercise 2.19. In a previous exercise, we saw that unique factorization fails in
Z[
√
−5] because for instance

3 · 7 = (1 + 2
√
−5)(1− 2

√
−5).

But we have the factorizations into prime ideals

(3) = (3,
√
−5 + 1)(3,

√
−5− 1),

(7) = (7,
√
−5 + 3)(7,

√
−5− 3),

(1 + 2
√
−5) = (3,

√
−5− 1)(7,

√
−5− 3)

(1− 2
√
−5) = (3,

√
−5 + 1)(7,

√
−5 + 3).

Prove these identities.

Let R be a Dedekind domain with fraction �eld K. Using unique factorization,
we see that the set of nonzero ideals of R form a semi-group under multiplication
which is isomorphic to

⊕
p Z≥0. We can produce a group

⊕
p Z out of it by formally

introducing the negative powers of a prime ideal. This can be done in a more
concrete way, with the concept of a fractional ideal.

De�nition 2.20. A fractional ideal is a nonzero �nite R-submodule of K. Equiv-
alently, it is a nonzero R-submodule I of K such that ∃a ∈ R− {0} , aI ⊂ R.

De�nition 2.21. Let I be a fractional ideal. De�ne I−1 := {a ∈ K|aI ⊂ R}.

We de�ne the product of two fractional ideals in the same way as ideals.

Proposition 2.22. Every fractional ideal is uniquely factorized as I =
∏g
i=1 p

ei
i ,

where pi are prime ideals and ei ∈ Z. The set of fractional ideals form a group
under multiplication, where the identity element is R and the inverse of I is I−1

de�ned as before. This group is free abelian on the set of prime ideals.
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